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Cognitive changes and dementia risk after traumatic brain injury:
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Abstract Traumatic brain injury (TBI) is recognized as an important risk factor for the long-term cognitive
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health of military personnel, particularly in light of growing evidence that TBI increases risk for Alz-
heimer’s disease and other dementias. In this article,we review the neurocognitive and neuropathologic
changes after TBI with particular focus on the potential risk for cognitive decline across the life span in
military service members. Implications for monitoring and surveillance of cognition in the aging mil-
itary population are discussed. Additional studies are needed to clarify the factors that increase risk for
later life cognitive decline, define themechanistic link between these factors and dementia, and provide
empirically supported interventions to mitigate the impact of TBI on cognition across the life span.
� 2014 The Alzheimer’s Association. All rights reserved.
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1. Introduction

There is growing evidence that a history of traumatic brain
injury (TBI) places individuals at greater risk for developing
neurodegenerative diseases such as dementia of the Alz-
heimer’s type (DAT) and other dementias across the life
span [1–5]. Although much of the research has focused on
the increased risk associated with moderate-to-severe brain
injuries, emerging evidence suggests that mild head injuries,
particularly repeated mild injuries, may also serve as a risk
factor [6–8]. Both the Department of Defense (DoD) and
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the Department of Veterans Affairs (VA) have recognized
the importance of better understanding this relationship,
particularly given the incidence of TBI in the military
resulting from combat exposures, the growing evidence of
dementia risk after TBI, emotional disorders and other
nonspecific factors, and concern for the implications of
these factors on the aging service member [9,10].

The purpose of this article is to review neurocognitive
and neuropathologic changes after TBI, with a focus on the
potential risk for cognitive decline across the life span in mil-
itary service members with a history of TBI.Wewill begin by
defining TBI and summarizing expected short- and long-term
cognitive and behavioral outcomes. Next, we will summarize
evidence for increased risk of dementia, particularly DATand
chronic traumatic encephalopathy (CTE), after a history of
TBI. We will review TBI assessment protocols, outcomes,
and lessons learned within the military and will end with a
discussion of implications for monitoring and surveillance
of cognition in the aging military population.
2. TBI overview

Similar to the definition of TBI from the Centers for Dis-
ease Control and Prevention [11], the VA/DoD [12] define
eserved.
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Fig. 1. Hypothetical cognitive function recovery paths. Reprinted, with

permission, from Employee Education System. Traumatic Brain Injury:

Independent Study Course. Department of Veterans Affairs; 2010: p. 17.

AOC, alteration of consciousness; PTA, posttraumatic amnesia; TBI, trau-

matic brain injury.
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TBI as a traumatically induced structural injury and/or phys-
iological disruption of brain function resulting from an
external force that is indicated by new onset or worsening
of at least one of the following clinical signs immediately
following the event: any period of loss of or decreased level
of consciousness; any loss of memory for events immedi-
ately before or after the injury; any alteration in mental state
at the time of the injury (confusion, disorientation, slowed
thinking, etc.); neurologic deficits (weakness, loss of bal-
ance, change in vision, praxis, paresis/plegia, sensory loss,
aphasia, etc.) that may or may not be transient; or intracra-
nial lesion. Relevant to the military and veteran populations,
this definition further specifies that external forces may
include the head being struck by an object, the head striking
an object, the brain experiencing acceleration/deceleration
movement without external trauma to the head, a foreign
body penetrating the brain, or forces generated from events
such as a blast or explosion.

TBI ranges in severity from mild to moderate to severe
and results in some disturbance in cognitive, behavioral,
emotional, or physical functioning. These effects may be
transient, long lasting, or permanent depending on injury
characteristics and severity. Initial presentation of TBI
varies greatly; thus, classification of injury severity is one
of the most important predictors for immediate and long-
term outcomes. Severity of TBI is most commonly deter-
mined by depth of coma (e.g., via Glasgow Coma Score
[GCS]), duration of unconsciousness after injury (e.g.,
loss of consciousness [LOC] or time to follow commands),
or duration of confusion after injury (e.g., length of post-
traumatic amnesia [PTA]). GCSs are commonly used to
define injury severity, with postinjury GCS scores,8 indi-
cating a severe injury and GCS scores between 9 and 12
indicating a moderate injury. For a TBI to be considered
mild, most definitions require GCS scores to be no less
than 13; LOC and PTA, if present, to be brief (e.g.,
,30 minutes and,24 hours, respectively); and neuroimag-
ing studies to have no abnormal findings [13–15]. The
label, complicated mild TBI (mTBI), has been used to
indicate an injury that meets the mTBI definition with the
presence of abnormal neuroimaging findings [16].
Although TBI occurs in all demographic groups, particular
risk factors for TBI include age (i.e., very young or aging
individuals) [17], being male [17], lower socioeconomic
status [18], being from a minority racial/ethnic group
[19], history of alcohol or other substance abuse [20], and
history of TBI [21]. Additionally, military service members
are at particular risk for TBI, with prevalence rates esti-
mated to be between 10% and 20% of those currently
serving in the military [22–24].

TBI is a leading cause of death and disability among ci-
vilians in the United States with an estimated 1.7 million
people sustaining a TBI annually [17]. However, these rates
do not include military personnel who sustained a TBI
abroad or who received care in federal, military, or VA hos-
pitals. According to the Defense and Veterans Brain Injury
Center, more than 270,000 TBIs have been documented in
military medical records from January 2000 through the first
quarter of 2013 [25]. Although combat- or weapon-related
TBI is often considered the signature injury among service
members serving in Iraq and Afghanistan since 2001, the
rate of TBI occurring in the nondeployed population actually
exceeds that of combat-related TBI [25,26].

Most TBIs diagnosed in the DoD and VA are consistent
with mTBI (82%), with the primary etiology being blast
related [25]. The other major causes of TBI are consistent
with those observed in the civilian population and include
motor vehicle accidents or land transport accidents, falls,
and sports and recreational injuries [25]. In those with severe
and penetrating TBI, the four most common etiologies are
blast, motor vehicle accident, falls, and gunshots to the
head or neck [27].
3. Cognitive outcome after TBI

The effect of TBI on cognition and subsequent recovery
varies as a function of injury severity. Individuals sustaining
a mTBI will typically experience transient cognitive (e.g.,
mild confusion, difficulty maintaining attention, and forget-
fulness), emotional (e.g., tearfulness, irritability), and phys-
ical symptoms (e.g., headaches, sensitivity to light, blurred
vision) that begin immediately after the injury and improve
over a period of days to weeks, as illustrated in Fig. 1. Most
available research shows that individuals with uncompli-
cated mTBI typically recover to baseline levels of cognitive
functioning within 1 to 3 months after injury and are ex-
pected to have a favorable long-term outcome [28,29].
Prolonged recovery course has been associated with more
severe acute injury indicators (e.g., unconsciousness, PTA,
or initially more severe symptoms) [30], and there is evi-
dence that repeated mTBI or complicated mTBI may also
place individuals at risk for a prolonged or atypical recovery
course [31,32]. Although persisting symptoms may remain
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in a minority of individuals outside of this window [33], ev-
idence indicates that incomplete recovery from mTBI may
be associated with or complicated by preexisting or comor-
bid psychiatric, medical, psychosocial, or litigation factors
[34,35]. The etiology of persistent complaints in some
military service members after mTBI is poorly understood
and will be discussed in more detail in Section 5.

In contrast, individuals with moderate-to-severe TBI may
have persisting or even chronic impairments that limit their
ability to return to previous levels of functioning (See Fig. 1
for illustration). Compared with individuals with mTBI,
these individuals are much more likely to require acute hos-
pitalization, inpatient [36] or post–acute rehabilitation [37],
and outpatient care related to their injuries. The early recov-
ery period after moderate-to-severe TBI includes a series of
predictable stages during the initial recovery period.
Although the order of progression through these stages is
constant, some stages may be absent and duration varies.
Impaired consciousness is typically seen immediately after
injury, with coma and persistent vegetative state (PVS) rep-
resenting the most extreme end of the spectrum. When pre-
sent, resolution of coma and PVS is typically followed by a
period of PTA, in which the individual is responsive but
markedly confused and amnestic [38]. After resolution of
PTA, most individuals with moderate-to-severe TBI demon-
strate continued cognitive and neurobehavioral impair-
ments, which are variable and dependent on factors such
as severity of injury, premorbid functioning, comorbid
neurologic and psychiatric status, and length of time since
injury. Characteristic cognitive impairments include
impaired fine motor speed; attention; cognitive processing
speed, learning, and memory; complex language and
discourse; and executive functions (e.g., [38,39]).
Circumscribed or localized cognitive impairments, such as
language or visual spatial impairment, may be seen in
individuals with focal injuries but are generally
superimposed on global cognitive dysfunction resulting
from diffuse injury. Although not described in detail in
this article, moderate-to-severe TBI may also result in a
number of neurobehavioral changes in addition to these
cognitive changes, including, but not limited to, decreased
awareness, disinhibition, impulsivity, impaired social prag-
matics, and decreased judgment [40].

Cognitive and neurobehavioral functioning typically
improves in those with moderate-to-severe injuries with
the most recovery seen in the first 6 months after injury
and continuing for 18 months or longer [28,39].
Improvement in basic cognitive skills, such as immediate
attention and orientation, precedes improvement in more
complex cognitive skills, such as problem solving and
executive functioning [39,41]. In large-scale prospective
studies, almost all patients with moderate or severe TBI
have detectable cognitive impairments at 1 month after
injury [42]. By 1 year, almost all individuals with very
severe injuries display cognitive impairment, and more
than half with moderate-to-severe impairment have some
residual deficits [43]. Recovery of cognitive functioning
usually reaches a plateau at 18 to 24 months, but a sub-
group will improve beyond this point, whereas another
subgroup may show late decline [39,44]. Greater age at
the time of injury and increased levels of depression
may be associated with increased risk of late decline.
There is also significant literature indicating that a
history of TBI leads to increased risk for dementia later
in life [1–5]. This will be discussed in more detail in
Section 6.
4. Neuropathologic changes and neurometabolic
cascade after TBI

Pathology resulting from TBI is heterogeneous and typi-
cally categorized as focal or diffuse. Focal injuries, by defi-
nition, are typically associated with moderate-to-severe TBI
and most often occur from direct impact to the head or brain
(e.g., blunt force, gunshot wounds, etc.). Focal injuries
include cortical or subcortical contusions and lacerations,
as well as intracranial bleedings (e.g., subarachnoid hemor-
rhage and subdural hematoma). Contusions to the brain after
TBI are common and often occur in a characteristic distribu-
tion involving the frontal and temporal poles, the lateral and
inferior aspects of the frontal and temporal lobes, and less
commonly the inferior aspects of the cerebellum [45].
Diffuse brain injury refers to widespread stretching and
tearing of brain tissue, including a number of pathologies
such as hemorrhages and tissue tears throughout the brain.
It is commonly seen after acceleration/deceleration injuries
(e.g., motor vehicle accidents). The main form of diffuse
injury is called diffuse axonal injury (DAI) and involves
shearing of neuronal axons. The cerebral commissures and
other white matter tracts of the brainstem are particularly
vulnerable to stretching and shearing as a result of mechan-
ical forces. The extent of DAI may be the principal patho-
logic substrate responsible for decreased arousal levels and
the range of neurologic deficits after brain injury [46].

Despite clear transient cognitive and behavioral changes,
brain trauma resulting frommTBI is typically not observable
on standard structural neuroimaging. There is no dispute,
however, that mTBI results in some diffuse and likely micro-
scopic trauma or metabolic alteration of the brain. Recent
animal studies indicate that cognitive and behavioral
changes observed after mTBI are most likely the result of
a multifaceted neurometabolic cascade. The initiating event
is believed to be stretching and disruption of neuronal and
axonal cell membranes resulting in abrupt and indiscrimi-
nant release of neurotransmitters and ionic shifts, which
include increases in extracellular potassium and sodium
and intracellular calcium. Enhanced release of excitatory
neurotransmitters, particularly glutamate, which binds to
N-methyl-D-aspartate receptors, results in further depolari-
zation, influx of calcium ions, and widespread suppression
of neurons and glucose hypometabolism. Glucose consump-
tion is raised as membrane pumps increase activity to restore
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ionic balance, further depleting energy stores. This is
coupled with decreased cerebral blood flow and glucose
availability resulting from endothelial accumulation of cal-
cium. The discrepancy between glucose supply and demand
leads to a generalized cellular crisis [47,48]. This overall
process is transient with an ultimate return to homeostasis
within a few days.
5. Effects of TBI in military

Most studies presented previously describe TBI in
civilian populations. Given the high rates of TBI seen in vet-
erans and military service members, the cognitive and
behavioral sequelae of TBI among military personnel have
been a primary focus of research in recent years. These
studies build on the knowledge gained from civilian litera-
ture, while recognizing the unique characteristics of this spe-
cial population who may have different injury mechanisms,
risk factors, and comorbidities. Studies have examined both
the acute and chronic symptoms of TBI as well as commonly
occurring comorbid conditions.

The acute effects of mTBI in military personnel have
been documented. Similar to civilians, the most commonly
reported postconcussive symptoms include headaches,
dizziness, memory problems, balance problems, and irrita-
bility [49,50]. Cognitive deficits are observed on
computerized testing in the acute postinjury phase (i.e.,
within 3–10 days after injury) in deployment-related
mTBI [51–54]. Consistent with civilian research, these
prospective studies show that cognitive deficits resolve
within days to weeks. Additionally, retrospective studies
of more remote history of mTBI (e.g., months to years
after injury) during deployment typically do not show
persisting cognitive effects or noncognitive symptoms
[55–57]. For example, self-reported TBI during deploy-
ment did not increase the risk of cognitive impairment on
postdeployment cognitive testing for individuals who had
returned from deployment in the last 2 years [55]. Likewise,
a history of TBI did not affect outcomes in a study of the
effects of deployment on cognition [58]. In a study of
cognitive change from baseline to routine postdeployment
cognitive testing [59], 70% of service members reporting
a history of mTBI during deployment showed no change
in cognitive functioning. Compared with a control group,
however, declines in performance were observed in a subset
of individuals who reported both mTBI and ongoing
noncognitive symptoms. Whether these declines are due
to persistent effects of mTBI or some other comorbid con-
dition is unknown from this study, particularly given the
high degree of comorbidities in service members with
TBI history [22,23,60], particularly posttraumatic stress
disorder (PTSD) and mood disorders. Other retrospective
studies of the chronic effects of mTBI show that a subset
of individuals with a history of mTBI continue to report
persistent cognitive complaints and somatic symptoms
consistent with concussion [22]. There is evidence,
however, that these enduring symptomatic complaints
may be misattributed to mTBI and may, in fact, be the result
of other nonneurologic issues such as emotional distress or
PTSD [22,24,57,61–63].

Others argue that the specific nature of military-related
TBI (i.e., blast injury, repetitive injuries, etc.) may explain
persistent or atypical cognitive and noncognitive recovery
of symptoms. Given extended and repeated deployments,
the risk for repeated mTBIs is high. There is support within
civilian literature that repeated mTBIs, particularly in close
proximity, lead to greater magnitude of symptoms and
slower recovery rates for individuals with a history of multi-
ple concussions [32,64]. Initial studies in service member
and veteran populations suggest that multiple mild brain
injuries do increase symptoms reported in the acute period
after the most recent injury and are associated with more
symptom complaints associated with postconcussion
syndrome compared with those who incurred only one
injury [50,65]. Animal studies have led some to speculate
that blast injury, commonly experienced in deployment
settings, may lead to more severe and potentially persistent
neuropathologic changes in the brain (for review, see
[66]). However, studies to date have not documented clinical
differences in the acute or chronic effects of blast injury
compared with nonblast injury on cognitive performance
or somatic symptoms [52,67–71].

Furthermore, screening-based survey data reflect a large
degree of overlap between TBI and a number of comorbid-
ities, including PTSD, anxiety, and mood disorders and other
mental health diagnoses. Rates of comorbid PTSD and
mTBI are estimated to be about 30% of all those who screen
positive for TBI [22,23,72]. Increased odds of PTSD
symptoms have been associated with a history of TBI [73].
Veterans with a confirmed diagnosis of TBI were more likely
to have clinical diagnoses of PTSD, other anxiety disorders,
and adjustment disorders [74]. It is believed that co-
occurrence of these two disorders may result in additive ef-
fects on the brain leading to longer symptom duration and
greater cognitive difficulties after TBI [22,75]. Other
studies demonstrate a specific increased risk for depression
after TBI across the spectrum of TBI severity [22,76],
which is important to document as depression can slow
recovery, worsen neuropsychological impairment, and
contribute to worse global outcomes [77]. Increased suicide
risk after TBI is equivocal with some studies showing
increased risk [78,79], even among those with milder
injuries [80] and other studies [81–83], including a large
review by the Institute of Medicine (IOM) [84], concluding
no association between TBI and suicide.

Other factors such as ongoing pain and sleep disturbance
may impact cognitive functioning and, when present, exac-
erbate the effects of TBI. A meta-analysis found prevalence
rates of pain disorders in the military to be 43.1% with TBI
demonstrating an independent correlation with pain disorder
diagnosis, even when mental health diagnoses were
controlled [85]. In a study of veterans with TBI, 70% had
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a comorbid diagnosis of head, back, or neck pain [86]. Sleep
disturbance is a frequent complaint after TBI [87]. Studies
have found that sleep problems are significantly related
to TBI in military populations [88–90] and that risk for
sleep disturbance increases with a history of multiple mild
TBIs [91].
6. Risk for dementia after TBI

The link between TBI and risk for dementia later in life
has been repeatedly established in the literature [1–8,92–97].
Specifically, a prospective study of World War II veterans
[2] found a two- to fourfold increase in dementia in veterans
with a history of moderate-to-severe TBI. Other retrospec-
tive studies show that a history of moderate-to-severe TBI
earlier in life is reported more frequently in individuals
with dementia compared with controls [3,98–100].
Systematic reviews [8,84] conclude an increased risk of
dementia in individuals with a history of at least one
moderate-to-severe TBI compared with those with no TBI
history. However, consensus is not complete given that
some epidemiologic studies failed to show an association be-
tween TBI and later dementia [4,101–106]. Although some
conflicting findings have been reported, subsequent
reanalysis of these studies confirmed the positive
association between development of DAT and a history of
previous head trauma [1,6]. Other studies provide evidence
that a history of TBI accelerates DAT onset at younger
ages [95,107,108] and that risk for developing DAT
increases with increasing severity of TBI [2,3].

The risk for dementia after mTBI is less conclusive. Pre-
vious systematic reviews and an IOM report conclude there
is no increased risk for DAT later in life after a history of
mTBI without LOC [8,84]. There was also no increased
risk for dementia in World War II veterans with a history
of mTBI [2]. However, there is evidence that repeated
mTBI may result in accumulated neuropathology, chronic
neurologic problems, and ultimate dementia [109]. Links be-
tween professional boxing and later dementia pugilistica
have been established since the 1920s [110,111], with
corresponding neuropathologic changes reported as early
as the 1970s [112].

More recently, similar chronic cognitive and neurobeha-
vioral problems have been described in athletes in contact
sports with a history of repeated concussions [113–116]. A
series of autopsy reports of such athletes have reported
neuropathologic changes similar to those seen in boxers
with dementia pugilistica [113,116]. These neuro-
pathologic changes include, among other things,
accumulated neurofibrillary tangles (NFTs), which are
believed to be a result of repeated mechanical and
rotational forces on the brain. The more general term,
chronic traumatic encephalopathy (CTE), is being used to
describe this chronic brain syndrome believed to result
from repetitive mild brain trauma. CTE is regarded as a
chronic neurodegenerative condition that occurs in midlife,
years or decades after a sports career has ended, and is
clinically associated with many behavioral changes,
including irritability, impulsivity, aggression, depression,
cognitive changes (e.g., memory and executive
functioning) [117], and heightened suicidality [116,118].
However, the clinical course and symptoms reported in
patients believed to have CTE are variable, and there are
no generally accepted guidelines for a clinical diagnosis of
CTE or for how to distinguish it from other types of
dementias [109]. As of yet, there are no prospective or
case-controlled studies to verify specific or causal relation-
ships between the behavioral syndrome of CTE and the un-
derlying neuropathologic findings. A recent study [119]
confirmed higher rates of cognitive impairment in a sample
of retired National Football League (NFL) athletes (35%)
than would be expected in the general population with com-
parable age (w5%). However, the pattern of neurocognitive
impairments in those retired NFL athletes with probable
mild cognitive impairment (MCI) did not differ from a
demographically matched clinical sample of amnestic MCI
patients, suggesting a similar underlying pathophysiology.
Thus, it was concluded that cognitive dysfunction in retired
NFL athletes is best explained by the presence of diminished
cerebral reserve leading to earlier clinical expression of late-
life neurodegenerative diseases rather than CTE. A number
of research groups have reported recent progress toward
identification of imaging agents for in vivo imaging of tau
deposition in the brain [120–125]. These efforts will
facilitate much needed research regarding tau
pathophysiology in CTE and other neurodegenerative
dementias.

Given the high incidence of comorbid PTSD with TBI in
military populations, researchers have begun to examine the
relationship between PTSD and dementia risk. In two sepa-
rate studies, Yaffe et al. [126] and Qureshi et al. [127] found
a nearly twofold increased risk of dementia associated with
PTSD in veteran samples after controlling for confounding
factors. Mechanisms proposed for this increased risk
included decreased cognitive reserve and stress-related
sequelae, including damage to the hippocampus due to
chronic stress or inflammation related to changes in the
hypothalamic-pituitary-adrenal axis due to acute stress.
However, further research is warranted to understand the in-
dependent contributions of TBI and PTSD to risk of demen-
tia and the associated risk in comorbid TBI/PTSD.

Table 1 provides a summary of the onset and course of
the primary cognitive and neurobehavioral effects associ-
ated with the conditions discussed in this section. Of signif-
icance is the high degree of overlap of clinical symptoms
between these conditions. Despite this overlap, the promi-
nence of clinical symptoms and their onset and course
differ significantly. It should be highlighted that mTBI
and TBI show immediate effects that typically recover
over time as opposed to variable onset and course of symp-
toms seen in PTSD. Lastly, although the clinical symptoms
of DAT and CTE may appear to be similar to those of TBI,



Table 1

Comparison of clinical symptoms, onset, and course in mild traumatic brain injury (mTBI), moderate-to-severe traumatic brain injury (TBI), posttraumatic

stress disorder (PTSD), dementia of Alzheimer’s type (DAT), and chronic traumatic encephalopathy (CTE)

Condition Onset Course Primary cognitive effects Primary neurobehavioral effects

mTBI Immediate Recovery within days to weeks;

persisting symptoms often accounted

for by psychosocial factors

Mild effects seen in attention, processing

speed, and short-term memory

Minimal

TBI Immediate Recovery over months to years;

possible chronic effects

Global cognitive effects most pronounced in

attention, processing speed, memory, and

executive functioning

Often pronounced andmay include decreased

awareness, disinhibition, impaired social

skills, poor judgment, and others

PTSD Variable Variable; may see recovery of

symptoms with treatment

Most pronounced in attention; variable

effects in learning, memory, and

executive functioning

Often pronounced and may include

hypervigilance, anxiety, avoidance,

flashbacks/nightmares

DAT Delayed Progressive Specific to memory but progresses to be

global

Minimal early in course and progress to

include anosognosia and other variable

problems

CTE Delayed Progressive Executive functioning and memory but

progresses to be more global

Significant early in course and may include

irritability, impulsivity, aggression,

depression, and heightened suicidality
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they occur later in life and follow a progressively deterio-
rating course.
7. Pathology of dementia after TBI

Although evidence is accumulating that DAT risk is
increased after TBI, the specific underlying pathology
driving this increased risk is still unclear. Most mechanistic
explanations focus on a presumed neuropathologic trigger
that is activated at the time of injury that persists and evolves
over time, ultimately resulting in progression to dementia.
Axonal damage is a key manifestation of both Alzheimer’s
disease (AD) and TBI, thus many have pursued this as a
possible link between TBI and the development of dementia.
Evidence from both human studies and animal models has
demonstrated that the key protein most commonly associ-
ated with AD, amyloid-b (Ab), accumulates within neuronal
cell bodies and injured axons [128,129] within hours to days
after TBI [130–135]. In response to trauma, increased
amyloid precursor protein (APP) is expressed within both
neuronal cell bodies [136] and injured axons [137] leading
to increased generation of its metabolite, Ab. This accumu-
lation of APP and Ab is hypothesized to be a key factor in the
subsequent Ab plaque formation [138], which is one of the
hallmarks of AD. Furthermore, it is hypothesized that the
APOE ε4 genotype may affect amyloid pathology and
outcome after TBI, putting those with this allele at particular
risk for AD [3,139,140].

NFTs are also considered to be a major pathologic hall-
mark of AD. NFTs are composed of abnormally phosphory-
lated tau proteins, which are believed to be neurotoxic and
can be the cause of neuronal death. Tau accumulation has
been observed after TBI in animals [132,141,142] and
humans [130,131]. However, unlike Ab, NFTs have not
been found to be acutely increased after a single TBI
[141]. Instead, accumulated tau protein pathology, with little
to no deposition of Ab, appears to be implicated in the
increased risk for early-onset behavioral and cognitive
decline as a result of multiple repetitive mTBIs [133].

Inflammatory response in the brain after TBI has been
extensively documented [143,144]. And although Ab
formation and associated tauopathy might appear to
sufficiently explain the potential link between TBI and
dementia, these same proteins can trigger processes
leading to inflammation. Although acute inflammation is
to be expected after TBI, there is also accumulating
evidence that the inflammatory response from TBI may
persist over time demonstrating that the initial effects of
TBI may be more long lasting than previously believed.
Studies document persistent inflammation in the brain
after TBI in animal models for at least a year [145,146]
and in postmortem human studies for many years after
TBI [147]. A recent study using positron emission tomogra-
phy to examine in vivo the inflammatory response after brain
injury demonstrated increased microglial activation up to
17 years after injury, with activation in the thalamus being
associated with more severe cognitive impairment [148].
Thus, TBI may trigger an inflammatory response, particu-
larly in subcortical regions, that may persist and further
evolve over time. This persistent inflammation may be an
initial trigger of a larger cascade ultimately leading to
TBI-related dementia, neurodegenerative, or cerebrovascu-
lar disease. The presence of inflammation is foreboding,
given findings that elevated inflammatory markers are pre-
dictive of cognitive decline decades later [149]. Addition-
ally, persisting inflammation in TBI may offer explanation
for more recently published findings of increased stroke
risk in individuals with a history of TBI [150,151].
8. Lessons learned from current military TBI
monitoring programs

Given obvious immediate effects of the injury (e.g., LOC,
marked confusion, coma), moderate-to-severe TBIs are
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often easy to identify leading to treatment. Both the DoD and
the VA are actively following these injured service members,
longitudinally, in empirical studies [152,153]. Many service
members suffer not only brain injury but also other systemic
injuries (e.g., amputation, sensory loss), and longitudinal
follow-up and data monitoring will help to clarify initial
care that helped to improve outcome and the natural course
of brain injury and polytrauma over the lifespan.

In contrast to moderate-to-severe TBI, the immediate
symptoms of mild TBI can be subtle and difficult to detect.
This is particularly true within a combat situation when
symptoms of mTBI may be mistaken for the stresses of
deployment or other psychological trauma/shock. To aid
in the detection of mTBI and its sequelae in the deployed
environment, multiple policies and programs were initiated
by the DoD, including the implementation of a neurocog-
nitive baseline assessment program at predeployment that
allows for postinjury comparison [154,155]. In the
deployed environment, the DoD enacted a policy to
require screening after potentially concussive events,
standardized evaluation of symptoms, and documentation
of the event, symptoms, and resultant diagnosis [156]. Af-
ter the enactment of this policy, the DoD increased training
of medics in appropriate screening for concussion and
modified their clinical care algorithms to reflect recent ev-
idence from theater-based research. The DoD continues to
emphasize detection of mTBI by requiring screening at
multiple time points (e.g., point of injury, before medical
evacuation to the United States, and before redeployment).
Survey questions targeting TBI detection at postdeployment
and at postdeployment reassessment (see Section 8.1) were
recently refined to encourage symptom reporting to connect
service members to care [156–158]. Additionally, there
are concerted efforts to screen for the presence of TBI in
polytrauma centers where other critical or life-threatening
multisystem injuries may mask initial symptoms of mTBI
[159]. Looking forward, research efforts are underway to
evaluate the efficacy of biomarkers, neuroimaging, and
other novel approaches for unequivocal diagnosis of TBI
[160].
8.1. Potential underreporting of mTBI on postdeployment
screening

Because of the growing concern over the health conse-
quences of TBI, all service members returning from combat
are screened for TBI using the Post-Deployment Health
Assessment/Post-Deployment Health Re-Assessment
(PDHA/PDHRA) from the DoD or the Veteran’s Health Ad-
ministration’s TBI Screening Questionnaire [80]. These
measures screen for potential exposure to risk events and
ongoing symptomology. However, the timing of administra-
tion of these measures can play an important role in what the
service member is willing to report. Some service members
mayminimize symptoms so as not to delay their return home
with lengthy follow-up evaluations [24,80]. Others may not
recognize the extent of their symptoms or may minimize the
impact of their symptoms until they return home to their
regular activities. Any delays in the initiation of treatment
can negatively affect the path of symptom resolution and
recovery; therefore, continued efforts to better identify
injuries as close to the time of injury as possible are
critical. As the DoD continues to develop its care model in
theater, there are now mandatory evaluations in place for
those who are felt to be at risk for TBI [161], with prescribed
algorithms for follow-up care. Refinements of the questions
asked during the PDHA and PDHRA are also focused to
address underreporting and to encourage acknowledgment
of symptoms to connect Service members to care [156].
The attention to screening and follow-up evaluation provides
documentation of diagnosis of TBI, records multiple expo-
sures and/or injuries in the population, and provides a better
basis from which one can evaluate long-term outcomes and
dementia risk.
8.2. Value of baseline testing

In 2008, Congress mandated a baseline predeployment
neurocognitive assessment for all US service members
[155] to address increasing concern surrounding the risk of
cognitive insult during military deployment. Recently, the
empirical validity of baseline cognitive testing within
concussion monitoring and management programs for pre-
venting or mitigating concussion risk has been questioned
[162]. Although some studies have suggested no added value
of baseline testing in civilian concussion monitoring pro-
grams [163,164], there is evidence that baseline testing
reduces the possibility of false-positive detection of concus-
sion in healthy service members. In a large study of military
service members (n 5 8002), Roebuck Spencer et al. [165]
found that when norm-referenced postdeployment scores
were considered in isolation, 66% of individuals classified
as “atypical” actually showed no change from baseline.
Baseline testing, especially testing that can be repeated
over the life span, allows for longitudinal tracking of an in-
dividual’s cognitive trajectory and detection of factors that
cause a change from baseline. Monitoring of these results
over time and controlling for effects of aging or other norma-
tive causes of cognitive change could improve the sensitivity
of dementia monitoring protocols.

Hypothetical examples of the benefits of longitudinal
monitoring are provided in Fig. 2A and B. These examples
illustrate how longitudinal testing might aid in diagnosis
and clinical management of service members. The y-axis
represents standardized cognitive testing scores
(mean 5 100; standard deviation [SD] 5 15). Fig. 2A in-
cludes a representation of an individual who experienced
an mTBI during deployment. This individual demonstrates
a drop in cognitive performance of approximately two SDs
after injury, which then improves to baseline functioning
over time and remains at this level at routine postdeployment
testing illustrating expected recovery of functioning as



Fig. 2. (A) Hypothetical cognitive function courses depicting (1) successful

recovery after mild TBI and (2) potential false-positive diagnosis in an in-

dividual with below average baseline performance. (B) Hypothetical cogni-

tive function course depicting recovery after mild TBI with successful

recovery followed by late-onset cognitive symptoms. SD, standard devia-

tion; mTBI, mild traumatic brain injury.
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documented in civilian and military literature [53,54,166].
Fig. 2A also provides an example of a possible false-
positive error in someone with premorbidly below-average
predeployment functioning. After an injury with suspected
concussion, this individual performed two SDs below the
mean on cognitive testing. In the absence of other informa-
tion, postinjury performance might be interpreted to repre-
sent cognitive impairment related to a concussion injury.
However, longitudinal assessment reveals that the individual
showed no change from baseline and that cognitive func-
tioning remained stable at follow-up testing points. Without
the advantage of longitudinal testing including a baseline
assessment, this individual may be misdiagnosed as having
had a concussion and may receive unnecessary treatment.
Finally, Fig. 2B provides a hypothetical example of late-
onset symptoms in an individual with a prior mTBI. Longi-
tudinal testing clearly shows a successful cognitive recovery
after the documented mTBI. Without the benefit of longitu-
dinal testing, late-onset symptoms might erroneously be
attributed to the previous mTBI. With the availability of
routine cognitive screening, the clinician would be better
equipped to explore and treat more accurate etiologies of
these symptoms. Finally, although not shown here, longitu-
dinal cognitive testing over the lifetime, when corrected
for expected effects of aging, would allow for identification
of future declines in functioning that, if found to be progres-
sive in nature, might signal the onset of a neurodegenerative
process.
8.3. Role of effort and motivation in assessment protocols

Confirming that test results are valid and representative
of true abilities/functioning is an essential part of any
(neuro)psychological evaluation but is of particular impor-
tance for military and veteran populations in whom invalid
performance may increase risks of misdiagnosis, have im-
plications for determining readiness to perform, and may
lead to overutilization of resources. Research with veterans
demonstrates discrepancies between subjective symptom
reporting and objective deficits on neuropsychological
test performance [167], indicating that symptom report
alone may be an unreliable way to establish cognitive func-
tioning. High failure rates on performance validity tests
during neuropsychological evaluations have been reported
in service members and veterans [168,169], with rates
ranging between 8% and 67% depending on evaluation
context [69,169–171]. Although the possibility of
intentional deception should be considered and ruled out,
noncredible symptom reporting may result from
misattribution of symptoms [172] or the effects of other
comorbid risk factors (e.g., pain, sleep loss, PTSD, etc.).
Research on novel performance validity indices for
cognitive and neurobehavioral assessment in military
samples is emerging [173,174], including an embedded
performance validity indicator within the Automated
Neuropsychological Assessment Metrics (ANAM) [165],
a computerized measure of cognition used routinely for es-
tablishing baseline cognitive functioning in service mem-
bers before deployment.
8.4. Comorbidities and TBI

TBI is a complex injury that is closely associated with a
number of co-occurring disorders and conditions (described
earlier). These comorbidities each may have independent
and specific effects on cognition and symptom reporting,
presenting a continuing challenge for clinicians working
with military service members with TBI. These patients
should be approached as individual cases, with an under-
standing that co-occurring factors including, but not limited
to, PTSD and other mental health disorders, ongoing acute or
chronic pain, sleep disturbance, and potential sensory
dysfunction will contribute to the clinical presentation
[175], and discerning the effects of these factors from those
of TBI may be difficult.



A.S. Vincent et al. / Alzheimer’s & Dementia 10 (2014) S174–S187S182
9. Implications for assessment and monitoring of aging
military service members

Studies of previous cohorts of service members have pro-
vided a window by which to view the lessons learned and ad-
vances made in TBI screening, diagnosis, and treatment. For
example, the Vietnam Veterans Head Injury Project moni-
tored individuals who incurred penetrating head injuries dur-
ing the Vietnam War [176] and tracked their health status,
functional outcomes, and reintegration into the community.
Although limited in sample size, the study has helped to
demonstrate the potential for neuroplastic repair, provided
a time course for development of posttraumatic epilepsy,
and yielded findings even from its initial publications that
influenced in-theater triage and surgical intervention. This
serves as a framework to consider the current information
base within the cohort deployed to current theaters of oper-
ation and informs future efforts to monitor an aging popula-
tion of service members who deployed to the combat theater.

Primary to any major longitudinal monitoring effort is
definition of key data elements that allow for integration of
data from multiple studies and shared ontologies associated
with that data to allow for reliable analysis and interpreta-
tion. DoD, VA, the National Institute on Disability and
Rehabilitation Research, and the National Institutes of
Health (NIH) have contributed to the development of com-
mon data elements for use in research related to TBI
[177], and many of these agencies now require the use of
those data elements for their funded research. In addition,
the NIH and DoD have sponsored a collaborative database
aimed to integrate findings from funded research, especially
clinical trials, that will be available on request for aggregated
analysis and publication (https://fitbir.nih.gov). Similar to
efforts in aging and autism, this increases available data to
examine effective treatments, novel contributors to positive
outcome, or evaluation of devices or methods for diagnosis
and detection. Furthermore, ongoing studies in DoD and
VA, to include the 15 Year Study sponsored by the Defense
and Veterans Brain Injury Center [178] and the TBI Model
Systems effort within VA [152] will allow for long-term
monitoring of not only moderate-to-severe TBI patients
but also those who have suffered mild injuries. These efforts
will contribute to the systematic monitoring of service mem-
bers and veterans over their life span and will lay the ground-
work for tracking of dementia onset, type, and course for
those individuals with premorbid brain injury.

Not all data for monitoring are contained in research
studies, and studies cited within this article reflect the need
for clinical data, at the administrative level, to be available
for analysis and monitoring of specific cohorts of patients
who were either exposed to risk for brain injury or incurred
brain injury. Recent policies in DoD that require documenta-
tion in the clinical record using automated forms provide a
substantial lesson learned and provide the initial documenta-
tion of injury, which allows for accurate follow-up and
long-term monitoring. Health systems research and clinical
monitoring studies based on these data, both in DoD and
VA, will allow investigators to chart the natural course of re-
covery in routine care and ultimately may provide insights
into the development of dementia associated with this risk
factor alone and/or in combination with other comorbid con-
ditions.

As noted in previous paragraphs, the starting point is ac-
curate diagnosis and early intervention. This has implica-
tions not only for diagnostic techniques and the need to
incorporate objective biometric diagnostics, but also for im-
provements in the timing and nature of the screening proto-
cols currently in use by health-care providers in DoD and
VA. By encouraging acknowledgment of current symptoms,
early interventions can be offered and chronic conditions
may be prevented. Education of the service member, their
command, and medical personnel on the effectiveness of
treatment, especially for mild injury, and the expected recov-
ery from current symptoms may improve ultimate outcome.

Finally, to understand if there are changes that may indi-
cate the onset of dementia, monitoring programs need to
consider and incorporate expected change and variability in
targeted areas of functioning, especially those affected by
age. This is especially true for cognition, in which there are
known specific effects of normal aging in various cognitive
domains. Incorporating the effects of normal aging (and other
relevant demographic factors) into ongoingmonitoring could
be accomplished through development of normative refer-
ence databases that use longitudinal modeling and risk ratios
based on performance decrements comparedwith an individ-
ual’s own premorbid performance and to the performance of
similar demographic groups. Although implementing such
monitoring programs may initially increase the costs associ-
ated with TBI treatment for the DoD and VA, the benefits of
early detection of cognitive changes and more accurate un-
derstanding of potential causal factors allow for earlier and
more focused treatment and would be expected to improve
outcome and reduce long-term costs in many cases.
10. Conclusion

In summary, TBI is known to lead to transient or chronic
effects on neurobehavioral and cognitive functioning, which
vary according to severity, mechanics, and timing of injury.
Growing research documents that a history of TBI may place
some individuals at risk for dementia later in life, either
because of genetic vulnerability or diminishing of cognitive
reserve leading to earlier onset of neurodegenerative
changes. Military service members are at particular risk
for TBI, leading to significant implications for monitoring
programs not only to detect these injuries and their effects
at their onset but also for monitoring potential long-term ef-
fects across the life span. This article highlights research on
the cognitive effects and risks for later life dementia from
TBI in civilian and military populations. Many lessons
have been learned from current military TBI monitoring

https://fitbir.nih.gov
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and management programs with significant implications for
continued monitoring of aging service members and veter-
ans.
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